
DCOR

Paul Müller

Nov 12, 2021

CONTENTS:

1 Introduction 3
1.1 Background . 3
1.2 DCOR is open and free . 3
1.3 Technology . 3

2 Using DCOR 5
2.1 Accessing Data on DCOR . 5

2.1.1 General remarks . 5
2.1.2 Access via DCOR-Aid GUI . 5
2.1.3 Access via DCOR-Aid Python library . 7

2.2 Uploading data to DCOR . 11
2.2.1 Prerequisites . 11
2.2.2 Data preparation with DCKit . 13
2.2.3 Data upload with DCOR-Aid . 13
2.2.4 Generating DCOR-Aid upload tasks . 14

2.3 Sharing (private) data with others . 18
2.3.1 Permission system . 18
2.3.2 Circles: Sharing with colleagues . 18
2.3.3 Collections: Sharing for collaborators . 18
2.3.4 Datasets: Simple sharing . 18

2.4 Citing data on DCOR . 18

3 Frequently Asked Questions 19
3.1 Can I upload a test dataset somewhere? . 19
3.2 What happens in the background when I upload a dataset? . 19
3.3 Why can’t I add resources to existing datasets? . 19

4 Self-Hosting 21
4.1 Installation . 21

4.1.1 Ubuntu and CKAN . 21
4.1.2 DCOR Extensions . 22
4.1.3 SSL . 23
4.1.4 Unattended upgrades . 27

4.2 Operations and maintenance . 28
4.2.1 Creating an encrypted access token . 28
4.2.2 Creating an encrypted database backup . 28

4.3 Upgrading DCOR . 29
4.3.1 DCOR only . 29
4.3.2 Upgrading CKAN/DCOR . 29

4.4 Troubleshooting . 29

i

5 DCOR Development 35
5.1 Ubuntu and CKAN . 35
5.2 DCOR Extensions . 35

5.2.1 Installation . 35
5.2.2 Initialization . 36

5.3 Load some test data into the database . 36
5.4 robots.txt . 36
5.5 Important commands . 37

5.5.1 System . 37
5.5.2 CLI . 37

6 Indices and tables 39

ii

DCOR

This is the official documentation of the Deformability Cytometry Open Repository (DCOR), a public repository for
real-time deformability cytometry (RT-DC) datasets hosted by the Max-Planck-Gesellschaft.

CONTENTS: 1

https://dcor.mpl.mpg.de
https://www.mpg.de

DCOR

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

1.1 Background

RT-DC is a microfluidics-based imaging technique that provides a high-throughput, high-dimensional, single-cell anal-
ysis. Measurement rates reach 1000 cells per second. An image is recorded for each cell, enabling cell charactereriza-
tion based on its phenotype. Due to the moderate microfluidic forces in the imaging channel, cells are deformed which
makes it possible to infer mechanical properties. In addition, fluorescence information can be recorded, allowing a
direct comparison to flow cytometry measurements.

Since RT-DC measurements are comparatively large (hundreds of MB to several GB), the handling and/or backup of
these data can become a problem, especially for small research and diagnostics labs. The deformability cytometry
open repository (DCOR) offers a solution to this problem. Users can upload their RT-DC data, create collections, share
with other users, and cite their data in scientific publications. Furthermore, DCOR is designed to integrate with the
open-source analysis software Shape-Out; with DCOR, data analysis only requires a network connection, the actual
data remain on the server.

1.2 DCOR is open and free

The official DCOR service at https://dcor.mpl.mpg.de is free of charge. If you are not permitted (e.g. by data protection
laws) to store your data there, you can always set up your own DCOR instance. This process is described in the self-
hosting section and should probably (depending on your storage and backup strategy) involve your IT department.
Please let us know if you are planning to set up your own DCOR instance so we can advertise this. Also, please don’t
hesitate to get into contact with us (e.g. issues and pull requests on GitHub) if you feel like you are missing a specific
feature or configuration option. DCOR should be robust and user-friendly - let’s improve it together!

1.3 Technology

DCOR is based on CKAN, an online data managing and publishing system. We provide a set of extensions and tools
designed to make the work with RT-DC data easier. For instance, this includes a RESTful service that allows Shape-Out
to directly access RT-DC resources without downloading entire measurements (ckanext-dc_serve) or previews of RT-
DC data on CKAN web interface (ckanext-dc_view). You can find all extensions and tools at the DCOR-dev GitHub
organization.

3

https://shapeout2.readthedocs.io
https://dcor.mpl.mpg.de
https://docs.ckan.org/
https://github.com/DCOR-dev/ckanext-dc_serve
https://github.com/DCOR-dev/ckanext-dc_view
https://github.com/DCOR-dev
https://github.com/DCOR-dev

DCOR

4 Chapter 1. Introduction

CHAPTER

TWO

USING DCOR

2.1 Accessing Data on DCOR

2.1.1 General remarks

There are two ways of interacting with data on a DCOR instance, via the web interface or via the API. With the web
interface (not covererd here), you can browse and search data in a convenient way with your webbrowser. The API
allows you to write custom scripts or libraries (DCOR-Aid uses the API).

Note that there are two main DCOR instances. One for development and testing (DCOR-dev) and one for production
use (DCOR). If you are new to DCOR, please use the DCOR-dev instance to get to know the system. If you are
ready to get serious, move on to the production instance.

2.1.2 Access via DCOR-Aid GUI

It is possible to access all data on DCOR via your browser by visiting https://dcor.mpl.mpg.de. However, you might
want to consider using DCOR-Aid instead, because:

• You can more easily browse circles and collection in the DCOR-Aid GUI.

• You can drag and drop resources from DCOR-Aid into Shape-Out (no need to copy and paste resource IDs).

• DCOR-Aid comes with a resource download manager.

Fig. 2.1: The DCOR-Aid setup wizard guides
you through the initial setup.

If you installed DCOR-Aid for the first time, the setup wizard will
ask you to choose how you would like to use DCOR-Aid. If you are
only interested in public data, then choose the Anonymous option.

When DCOR-Aid starts, you will then see several tabs. The tab on the
right Find Data allows you to search the DCOR database for datasets
and resources. If you previously entered an API token, then you can
also browse all your datasets in the My Data tab.

To search for a particular dataset, simply type your search term in the
search field. If you are interested in more elaborate search options,
please create an issue at the DCOR-Aid issue page.

5

https://dcor-dev.mpl.mpg.de
https://dcor-dev.mpl.mpg.de
https://dcor.mpl.mpg.de
https://dcor.mpl.mpg.de
https://dcor.mpl.mpg.de
../_images/upload_dcoraid_wizard.png
https://github.com/DCOR-dev/DCOR-Aid/issues

DCOR

Fig. 2.2: The search results in the Find Data tab can be filtered by circle and collection. The tool buttons allow you to
download datasets and resources and to view them online.

6 Chapter 2. Using DCOR

../_images/access_dcoraid_init.png

DCOR

2.1.3 Access via DCOR-Aid Python library

The DCOR-Aid Python library provides you with a convenient inter-
face to the API. In principle, you are not limited to Python or DCOR-
Aid, as DCOR is basically CKAN and thus uses the same API.

To initiate a connection with DCOR, run:

In [1]: import dcoraid

In [2]: api␣
→˓= dcoraid.CKANAPI(server="dcor-dev.mpl.mpg.de",
␣
→˓␣
→˓␣
→˓.
→˓.
→˓.
→˓: ␣
→˓ api_key="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJqdGkiOiItNUVsLVBTZVdfZ3hMM2tKNnZXS0hWZUdsN011SnpMRlFRMHluNzdUanZqRnhLX3VNLTQyUHhsbVQwRl9yOGlZbklOam9CN3E4emZITDA0TCIsImlhdCI6MTYzNDY1NTc1OH0.
→˓VfHEPXdEZKjCZOP4bO8cl0OiIxsvZZksWyQLl80UGbI")
...:

check that everything works
In [3]: assert api.is_available()

Here, server is the DCOR instance you are connecting to and
api_key is your personal access token that you need if you would
like to access private data. You can omit api_key if you are only
interested in public data (or if you don’t have an account).

The dcoraid.CKANAPI class gives you full access to the underlying
API. For instance, you could list all details of this dataset with:

In [4]: dataset_dict =␣
→˓api.get("package_show", id="figshare-7771184-v2")

the first ten entries of the dataset dictionary
In [5]: for key in list(dataset_dict.keys())[:10]:

␣
→˓...: print(f"{key:18s}: {dataset_dict[key]}")
...:

authors : Philipp Rosendahl,
→˓ Christoph Herold, Paul Müller, Jochen Guck
creator_
→˓user_id : 60a214ed-a079-4334-b277-7b64c40ae675
doi : 10.6084/m9.figshare.7771184.v2
id ␣
→˓ : 89bf2177-ffeb-9893-83cc-b619fc2f6663
isopen : True
license_id : CC0-1.0
license_title␣
→˓ : Creative Commons Public Domain Dedication
license_url : https:/
→˓/creativecommons.org/publicdomain/zero/1.0/(continues on next page)

2.1. Accessing Data on DCOR 7

https://ckan.readthedocs.io/
https://docs.ckan.org/en/2.9/api/index.html
https://docs.ckan.org/en/2.9/api/index.html
https://docs.ckan.org/en/2.9/api/index.html
https://dcor-dev.mpl.mpg.de/dataset/figshare-7771184-v2

DCOR

(continued from previous page)

metadata_created : 2021-11-06T23:42:08.003789
metadata_modified : 2021-11-06T23:43:22.151912

all resource names in the dataset
In [6]: print([r[
→˓"name"] for r in dataset_dict["resources"]])
['CD34_HSPC.rtdc', 'calibration_beads.rtdc',
→˓ 'README.txt', 'leukocytes.rtdc', 'reticulocytes.
→˓rtdc']

the␣
→˓first ten metadata entries of the first resource
In [7]: for key in␣
→˓list(dataset_dict["resources"][0].keys())[:10]:
...: print(f

→˓"{key:31s}: {dataset_dict['resources'][0][key]}")
...:

cache_last_updated : None
cache_url : None
created ␣
→˓ : 2021-11-06T23:43:01.762922
dc:experiment:date : 2017-02-09
dc:experiment:event count : 112000
dc:experiment:run index : 1
dc:experiment:sample : HSC_apher_raw_APC
dc:experiment:time : 15:13:04
dc:fluorescence:bit depth : 16
dc:fluorescence:channel 3 name : 700/75

Note: Beware of the dataset ambiguity: On DCOR, a dataset (or package) contains a number of resources. You would
call one of those resources a dataset in dclab. In other words, on DCOR a dataset consists of multiple RT-DC files
while with dclab.new_dataset() you always ever only open one resource.

Another very useful tool in DCOR-Aid is the APIInterrogator class which sits on top of CKANAPI and, amongst
other things, simplifies searching for datasets:

instantiate APIInterrogator
In [8]: air = dcoraid.APIInterrogator(api)

search for a dataset in a DCOR circle
In [9]: dbe = air.search_dataset(query="reference data",
...: circles=["figshare-import"])
...:

the returned database extract (one hit)...
In [10]: len(dbe)
Out[10]: 1

...contains all metadata of the datasets matching the search query
In [11]: dbe[0]["name"]
Out[11]: 'figshare-7771184-v2'

8 Chapter 2. Using DCOR

https://dclab.readthedocs.io/en/stable/sec_code_reference.html#dclab.new_dataset

DCOR

Example: List all RT-DC resources for a DCOR circle

Let’s say you are interested in all RT-DC data files in a DCOR circle, because you would like to run an automated
analysis with dclab. The following script creates a list of IDs resource_ids with all RT-DC files in the Figshare
mirror circle and plots one of the resources. For more information on how to access DCOR data with dclab, please
refer to the dclab docs.

import dclab
import dcoraid
import matplotlib.pylab as plt

name of the circle in question
circle_name = "figshare-import"

initialize API (for private datasets, also provide `api_key`)
api = dcoraid.CKANAPI("dcor.mpl.mpg.de")
air = dcoraid.APIInterrogator(api)
get a list of all datasets for `circle_name`
datasets = air.search_dataset(circles=[circle_name])
iterate over all datasets and populate our resources list
resource_ids = []
for ds_dict in datasets:

iterate over all resources of a dataset
for res_dict in ds_dict["resources"]:

identify RT-DC data
if res_dict["mimetype"] == "RT-DC":

resource_ids.append(res_dict["id"])

do something with one of the resources in dclab
with dclab.new_dataset(resource_ids[47]) as ds:

kde = ds.get_kde_scatter(xax="area_um", yax="deform")
ax = plt.subplot(111, title=ds.config['experiment']['sample'])
sc = ax.scatter(ds["area_um"], ds["deform"], c=kde, marker=".")
ax.set_xlabel(dclab.dfn.get_feature_label("area_um"))
ax.set_ylabel(dclab.dfn.get_feature_label("deform"))
plt.colorbar(sc, label="kernel density estimate [a.u]")
plt.show()

Example: Order all resources of a DCOR circle according to flow rate

You may need to order your resources according to a certain metadata key. You can find all available metadata keys in
the resource view in the DCOR web interface (scroll all the way down and click “show more”). In this example, we
order all resources according to flow rate (the “dc:setup:flow rate” resource key).

import dclab
import dcoraid
import matplotlib.pylab as plt
import numpy as np

name of the circle in question
circle_name = "figshare-import"

(continues on next page)

2.1. Accessing Data on DCOR 9

https://dcor.mpl.mpg.de/organization/figshare-import
https://dcor.mpl.mpg.de/organization/figshare-import
https://dclab.readthedocs.io/en/stable/sec_av_dcor.html#sec-av-dcor

DCOR

10 20 30 40 50 60 70
Area [µm²]

0.05

0.10

0.15

0.20

0.25

0.30

De
fo

rm
at

io
n

SFigure5c_RBC_Def_Target2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ke
rn

el
 d

en
sit

y
es

tim
at

e
[a

.u
]

10 Chapter 2. Using DCOR

DCOR

(continued from previous page)

dictionary with flow rates of interest
flow_rate_ids = {

0.04: [],
0.06: [],
0.12: [],
0.16: [],
0.32: [],
}

list of flow rates that don't fit into the above dictionary
unsrt_ids = []

initialize API (for private datasets, also provide `api_key`)
api = dcoraid.CKANAPI("dcor.mpl.mpg.de")
air = dcoraid.APIInterrogator(api)
get a list of all datasets for `circle_name`
datasets = air.search_dataset(circles=[circle_name])
iterate over all datasets
for ds_dict in datasets:

iterate over all resources of a dataset
for res_dict in ds_dict["resources"]:

identify RT-DC data
if res_dict["mimetype"] == "RT-DC":

flow_rate = res_dict.get("dc:setup:flow rate", np.nan)
for fr in flow_rate_ids:

if np.allclose(flow_rate, fr):
flow_rate_ids[fr].append(res_dict["id"])
break

else:
unsrt_ids.append((flow_rate, res_dict["id"]))

plot some statistics
ax = plt.subplot(title=f"circle {circle_name}")
plt.bar([f"{fr}" for fr in flow_rate_ids] + ["others"],

[len(flow_rate_ids[fr]) for fr in flow_rate_ids] + [len(unsrt_ids)])
ax.set_xlabel("flow rates [µL/s]")
ax.set_ylabel("number of datasets")
plt.show()

2.2 Uploading data to DCOR

2.2.1 Prerequisites

• DCKit: graphical toolkit for the management of RT-DC data (https://github.com/
ZELLMECHANIK-DRESDEN/DCKit/releases)

• DCOR-Aid: GUI for managing data on DCOR (https://github.com/DCOR-dev/DCOR-Aid/releases)

2.2. Uploading data to DCOR 11

https://github.com/ZELLMECHANIK-DRESDEN/DCKit/releases
https://github.com/ZELLMECHANIK-DRESDEN/DCKit/releases
https://github.com/DCOR-dev/DCOR-Aid/releases

DCOR

0.04 0.06 0.12 0.16 0.32 others
flow rates [µL/s]

0

5

10

15

20

25

nu
m

be
r o

f d
at

as
et

s

circle figshare-import

12 Chapter 2. Using DCOR

DCOR

2.2.2 Data preparation with DCKit

In many cases, you should not upload your experimental data right away to DCOR. There may be several reasons for
that, such as missing metadata, uncompressed raw data, or log files that contain sensitive or unnecessary information
(such as the user name of the person that recorded or processed the raw data). Please also note that DCOR only works
with DC data in the HDF5 file format (.rtdc file extension).

DCKit to the rescue! In most cases, it is sufficient to to run your data through DCKit. Load the files in question, run
the integrity check, complete or correct any missing or bad metadata keys and either convert the data to the .rtdc file
format (for tdms data) or compress the data. You can verify that everything went as intended by running the integrity
check for the newly generated files. If you are certain that you are not losing valuable information, you may also use
the repack and strip logs option.

Fig. 2.3: DCKit user interface with one .rtdc file loaded that passed all integrity checks. DCKit can perform various
tasks that are represented by the tool buttons on the right. Before uploading to DCOR, it is recommended to at least
update the metadata such that the integrity checks pass.

2.2.3 Data upload with DCOR-Aid

Fig. 2.4: The DCOR-Aid setup wizard guides
you through the initial setup.

To upload your data to a DCOR instance, you first need to create an
account. When you start DCOR-Aid for the first time, you will be
given several options.

• If you select “Playground”, DCOR-Aid will create a testing
account at https://dcor-dev.mpl.mpg.de for you. All data on
that development is pruned weekly. You can use the DCOR-
dev instance for testing.

• If you select “DCOR”, you will have to manually register at
dcor.mpl.mpg.de and generate an API key for DCOR-Aid in
the DCOR web interface.

2.2. Uploading data to DCOR 13

../_images/upload_dckit_preproc.png
../_images/upload_dcoraid_wizard.png
https://dcor-dev.mpl.mpg.de
https://dcor.mpl.mpg.de/user/register
https://dcor.mpl.mpg.de/user/register

DCOR

You can always run the setup wizard again via the File menu to e.g.
switch from “playground” to the production DCOR server.

Once DCOR-Aid is connected to a DCOR instance, go to the Upload
tab. The New manual upload tool button directs you to the metadata
entry and resource selection process. It is also possible to upload
pre-defined upload tasks (see next section).

Fig. 2.5: The upload tab gives you the option to manually upload datasets or to load auto-generated DCOR-Aid upload
task (.dcoraid-task) files via the buttons at the top. Queued and running uploads are then displayed in the table below.

2.2.4 Generating DCOR-Aid upload tasks

If you need a way to upload many datasets in an automated manner
you can make use of .dcoraid-task files. These files are essentially
upload recipes that can be loaded into DCOR-Aid in the Upload tab
via the Load upload task(s) from disk tool button.

The following script upload_task_generation.py recursively
searches a directory tree for .rtdc files and generates .dcoraid-task
files.

"""DCOR-Aid task creator

(continues on next page)

14 Chapter 2. Using DCOR

../_images/upload_dcoraid_init.png

DCOR

(continued from previous page)

This script automatically generates *.dcoraid-task files recursively.
For each directory with *.rtdc files, an upload_job.dcoraid-task file
is generated. This task file can then be loaded into DCOR-Aid for the
actual upload. This script only serves as a template. Please go ahead
and edit it to your needs if necessary.

Changelog

2021-10-26
- initial version
"""
import copy
import pathlib

import dclab
import dcoraid

#: Local directory to search recursively for .rtdc files
DATA_DIRECTORY = r"T:\Example_Data\Main_Directory"

#: List of file name suffixes of files to be included in the upload
#: (see :func:`dcoraid.CKANAPI.get_supported_resource_suffixes`)
DATA_FILE_SUFFIXES = [

"*.ini",
"*.csv",
"*.tsv",
"*.txt",
"*.pdf",
"*.jpg",
"*.png",
"*.so2",
"*.poly",
"*.sof",
]

#: Default values for the dataset upload
DATASET_TEMPLATE_DICT = {

Should the datasets by private or publicly visible (optional)?
"private": False,
Under which license would you like to publish your data (mandatory)?
"license_id": "CC0-1.0",
To which DCOR circle should the dataset be uploaded (optional)?
"owner_org": "my-dcor-circle",
Who is responsible for this dataset (mandatory)?
"authors": "Heinz Beinz Automated Upload",

}

#: Supplementary resource metadata
#: (see :func:`dcoraid.CKANAPI.get_supplementary_resource_schema`)
RSS_DICT = {

(continues on next page)

2.2. Uploading data to DCOR 15

DCOR

(continued from previous page)

"cells": {
"organism": "human",
"cell type": "blood",
"fixed": False,
"live": True,
"frozen": False,
},

"experiment": {
"buffer osmolality": 284.0,
"buffer ph": 7.4,

}
}

def recursive_task_file_generation(path=DATA_DIRECTORY):
"""Recursively generate .dcoraid-task files in a directory tree

Skips directories that already contain a .dcoraid-task file
(This is important in case DCOR-Aid already imported that task
file and gave that task a DCOR dataset ID).
"""
Iterate over all directories
for pp in pathlib.Path(path).rglob("*"):

if pp.is_dir():
generate_task_file(pp)

def generate_task_file(path):
"""Generate the upload_job.dcoraid-task file in directory `path`

A task file is only generated if the directory contains .rtdc
files.
"""
path = pathlib.Path(path)
assert path.is_dir()

path_task = path / "upload_job.dcoraid-task"
if path_task.exists():

print(f"Skipping creation of {path_task} (already exists)")
return

else:
print(f"Processing {path}", end="", flush=True)

get all .rtdc files
resource_paths = sorted(path.glob("*.rtdc"))
make sure they are ok
for pp in copy.copy(resource_paths):

try:
with dclab.IntegrityChecker(pp) as ic:

cues = ic.sanity_check()
if len(cues):

raise ValueError(f"Sanity Check failed for {pp}!")

(continues on next page)

16 Chapter 2. Using DCOR

DCOR

(continued from previous page)

except BaseException:
print(f"\n...Excluding corrupt resource {pp.name}",

end="", flush=True)
resource_paths.remove(pp)

proceed with task generation
if resource_paths:

DCOR dataset dictionary
dataset_dict = copy.deepcopy(DATASET_TEMPLATE_DICT)
Set the directory name as the dataset title
dataset_dict["title"] = path.name

append additional resources
for suffix in DATA_FILE_SUFFIXES:

resource_paths += path.glob(suffix)

create resource dictionaries for all resources
resource_dicts = []
for pp in resource_paths:

rsd = {"path": pp,
"name": pp.name}

if pp.suffix == ".rtdc":
only .rtdc data can have supplementary resource metadata
rsd["supplements"] = get_supplementary_resource_metadata(pp)

resource_dicts.append(rsd)
dcoraid.create_task(path=path_task,

dataset_dict=dataset_dict,
resource_dicts=resource_dicts)

print(" - Done!")
else:

print("\n...No usable RT-DC files!")

def get_supplementary_resource_metadata(path):
"""Return dictionary with supplementary resource metadata

You will probably want to modify this function to your liking.
"""
path = pathlib.Path(path)
assert path.suffix == ".rtdc"
supplements = copy.deepcopy(RSS_DICT)
Here you may add additional information, e.g. if you want
to add a pathology depending on the folder name of the
containing folder:
#
if path.parent.name.count("BH"):
supplements["cells"]["pathology"] = "long covid"
#
return supplements

if __name__ == "__main__":

(continues on next page)

2.2. Uploading data to DCOR 17

DCOR

(continued from previous page)

recursive_task_file_generation()

2.3 Sharing (private) data with others

This section is about dataset sharing. Whether you are working with private or public datasets, DCOR offers you several
ways of sharing datasets.

2.3.1 Permission system

When uploading a dataset, you have the choice of public and private datasets. Public datasets can be accessed by
anyone. Private datasets can only be accessed by members of the DCOR circle they were uploaded to. You can also
create DCOR collections, which may contain datasets that belong to different circles. Every member of that collection
has access to the private datasets therein.

2.3.2 Circles: Sharing with colleagues

DCOR circles are used to create, manage and publish datasets. A circle comprises one or more users who are part
of the same company, organization, research group, or laboratory. Every user can create circles and add other users
to them. Users can have different roles within a circle, depending on their level of authorization to create, edit, and
publish. All members of a circle have access to the private datasets of that circle.

2.3.3 Collections: Sharing for collaborators

You can use DCOR collections to create and manage selections of datasets. This could be to catalog datasets for a
particular project or team, or on a particular theme, or as a very simple way to help people find and search your own
published datasets. You can also use Collections to share private datasets with other users. All members of a collection
have access to the private datasets in that collection.

2.3.4 Datasets: Simple sharing

It is also possible to share individual datasets with other users.

2.4 Citing data on DCOR

18 Chapter 2. Using DCOR

CHAPTER

THREE

FREQUENTLY ASKED QUESTIONS

3.1 Can I upload a test dataset somewhere?

For all testing (or development) purposes, you can use the development instance at https://dcor-dev.mpl.mpg.de. All
datasets on that server are purged on a regular basis, so feel free to play with it as you see fit.

3.2 What happens in the background when I upload a dataset?

For every DC file that you upload, DCOR performs the following tasks in the background:

• Generate a condensed version of the original data. This computationally expensive task is necessary to provide
fast access to ancillary features, such as volume or principal inertia ratio, to Shape-Out 2 or dclab via the DCOR
API. It also allows you to only upload the data you actually recorded (without any disadvantages).

• Generate a preview image and extract the configuration for visualization of the data in the web interface.

• The original file you uploaded is not changed. You can verify that the uploaded file is identical to the original
file on your hard disk by comparing their sha256 sums. The sha256 sum is listed on each resource page under
Additional Information.

Please note that, due to this data processing, it may take a few minutes until the preview is visible and the ancillary
features are available via the DCOR API.

3.3 Why can’t I add resources to existing datasets?

Not being able to modify a finalized dataset is part of the design of DCOR. The idea behind this design choice is that
any user who uses a dataset (e.g. for a publication) will always work with the same resources. If you would be able to
add resources (or even replace them), then this would impair reproducibility (or at least make things intransparent).

When you upload several resources in a dataset via DCOR-Aid, the DCOR-Aid first creates a draft dataset. When a
dataset is a draft, resources may be uploaded and metadata may be edited. After the upload is complete, DCOR-Aid
sets the state of the dataset (irreversibly) to active. In the active state, only the following actions are allowed:

1. setting the visibility of a private dataset to public

2. changing the license of a dataset to a less restrictive one

19

https://dcor-dev.mpl.mpg.de

DCOR

20 Chapter 3. Frequently Asked Questions

CHAPTER

FOUR

SELF-HOSTING

4.1 Installation

This section describes how to setup your own DCOR production instance.

4.1.1 Ubuntu and CKAN

Please use an Ubuntu 20.04 installation for any development or production usage. This makes it easier to give support
and track down issues.

Before proceeding with the installation of CKAN, install the following packages:

apt update
CKAN requirements
apt install -y libpq5 redis-server nginx supervisor
needed for building packages that DCOR depends on (dclab)
apt install -y gcc python3-dev
additional tools that you might find useful, but are not actually required
apt install -y aptitude net-tools mlocate screen needrestart python-is-python3

Install CKAN:

wget https://packaging.ckan.org/python-ckan_2.9-py3-focal_amd64.deb
dpkg -i python-ckan_2.9-py3-focal_amd64.deb

Note: Do NOT setup file uploads when following the instructions at https://docs.ckan.org. DCOR has its own dedi-
cated directories for data uploads. The command dcor inspect will try to setup/fix that for you.

Follow the remainder of the installation guide at https://docs.ckan.org/en/2.9/maintaining/installing/
install-from-package.html#install-and-configure-postgresql. Make sure to note down the PostgreSQL password
which you will need in the initialization step.

Make sure to initiate the CKAN database with

source /usr/lib/ckan/default/bin/activate
export CKAN_INI=/etc/ckan/default/ckan.ini
ckan db init

DCOR by default stores all data on /data. This makes it easier to control backups and separate the CKAN/DCOR
software from the actual data. If you have not mounted a block device or a network share on /data, please create this
directory with

21

https://ubuntu.com/download/server
https://docs.ckan.org
https://docs.ckan.org/en/2.9/maintaining/installing/install-from-package.html#install-and-configure-postgresql
https://docs.ckan.org/en/2.9/maintaining/installing/install-from-package.html#install-and-configure-postgresql

DCOR

mkdir /data

4.1.2 DCOR Extensions

Installation

Whenever you need to run the ckan/dcor commands or have to update Python packages, you have to first activate the
CKAN virtual environment.

source /usr/lib/ckan/default/bin/activate

With the active environment, first install some basic requirements.

pip install --upgrade pip
pip install wheel

Then, install DCOR, which will install all extensions including their requirements.

pip install dcor_control

Initialization

The dcor_control package installed the entry point dcor which allows you to manage your DCOR installation. Just
type dcor --help to find out what you can do with it.

For the initial setup, you have to run the inspect command. You can run this command on a routinely basis to make
sure that your DCOR installation is setup correctly.

source /usr/lib/ckan/default/bin/activate
dcor inspect

Testing

For testing, common practice is to create separate test databases. We adapt the recipe from the CKAN docs to test the
DCOR extensions (e.g. we don’t need datastore).

• Activate the virtual environment:

source /usr/lib/ckan/default/bin/activate

• Install the requirements:

pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt
https://github.com/ckan/ckan/issues/5570
pip install pytest-ckan

• Create the test database:

sudo -u postgres createdb -O ckan_default ckan_test -E utf-8

• Create ckan.ini for testing:

22 Chapter 4. Self-Hosting

https://docs.ckan.org/en/2.9/contributing/test.html

DCOR

cp /etc/ckan/default/ckan.ini /etc/ckan/default/test-dcor.ini

Modify test-dcor.ini:

#sqlalchemy.url = postgresql://ckan_default:passw@localhost/ckan_default
sqlalchemy.url = postgresql://ckan_default:passw@localhost/ckan_test

#solr_url=http://127.0.0.1:8983/solr
solr_url=http://127.0.0.1:8983/solr/ckan

• Configure Solr Multi-core.

• Initialize the testing db:

export CKAN_INI=/etc/ckan/default/test-dcor.ini
ckan db init

You can then run the tests with e.g.:

export CKAN_INI=/etc/ckan/default/test-dcor.ini
pytest /path/to/ckanext-dcor_depot

4.1.3 SSL

You have two options. If you server is reachable through the internet, you should use Let’s encrypt (or a certificate
from your organization) to set up SSL. If you are hosting your server on the intranet (clinics scenario), then you should
create your own certificate and distribute it to your users

Creating an SSL certificate (Intranet only)

Start by creating your certificate (valid for 10 years):

openssl req -newkey rsa:4096 -x509 -sha256 -days 3650 -nodes -out fqdn.cert -keyout fqdn.
→˓key

where fqdn is your fully qualified domain name (FQDN) which maps to the server’s IP address. Make sure to enter it
in the dialog (otherwise use the IP address). This makes connection tests easier (e.g. if you only have SSH access to
the machine and need to use SSH tunneling to connect to the CKAN instance by mapping its FQDN in the /etc/hosts
file to 127.0.0.1 on the testing client).

You may want to create an encrypted access token for your users.

Now proceed with the SSL configuration below, replacing “dcor.mpl.mpg.de” with your FQDN.

4.1. Installation 23

https://docs.ckan.org/en/2.9/contributing/test.html?highlight=testing#configure-solr-multi-core

DCOR

Configuring nginx (SSL and uWSGI proxy)

Encrypting data transfer should be a priority for you. If your server is available online, you can use e.g. Let’s Encrypt
to obtain an SSL certificate. If you are hosting CKAN/DCOR internally in your organization, you will have to create a
self-signed certificate and distribute the public key to the client machines manually.

First copy the certificate to /etc/ssl/private:

cp dcor.mpl.mpg.de.cert /etc/ssl/certs/
cp dcor.mpl.mpg.de.key /etc/ssl/private/

Note: If dclab, Shape-Out, or DCOR-Aid cannot connect to your CKAN instance, it might be because the certificate
in /etc/ssl/certs/ does not contain the full certificate chain. In this case, just download the entire certificate chain
using Firefox (right-lick on the shield symbol an look at the certificate - there should be a download option for the
chained certificate somewhere) and replace the content of the .cert file with that.

Then, edit /etc/nginx/sites-enabled/ckan and replace its content with the following (change dcor.mpl.mpg.
de to whatever domain you use):

Note that nginx only caches GET and HEAD (not POST) by default:
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_methods
proxy_cache_path /tmp/nginx_cache levels=1:2 keys_zone=cache:30m max_size=250m;

server {
client_max_body_size 100G;
Use this if you don't have enough space on your root partition
for caching large uploads (rw-access to www-data).
client_body_temp_path /data/tmp/nginx/client_body 1 2;
listen 443 ssl http2;
listen [::]:443 ssl http2;
server_name dcor.mpl.mpg.de;

ssl_certificate "/etc/ssl/certs/dcor.mpl.mpg.de.cert";
ssl_certificate_key "/etc/ssl/private/dcor.mpl.mpg.de.key";

Enables byte-range support for both cached and uncached responses
from the proxied server regardless of the "Accept-Ranges" field
in these responses. This is important for resuming downloads.
proxy_force_ranges on;

Uncoment to avoid robots (only on development machines)
#location = /robots.txt { return 200 "User-agent: *\nDisallow: /\n"; }

Do not cache downloads of .rtdc data
location ~ \.(rtdc)$ {

proxy_pass http://127.0.0.1:8080$request_uri;
proxy_set_header Host $host;

Cache each and every download on disk to get load off of
the ckan workers (see ckan-uwsgi.ini).
proxy_max_temp_file_size 100000m;

Use this if you don't have enough space on your root partition
(continues on next page)

24 Chapter 4. Self-Hosting

https://letsencrypt.org/

DCOR

(continued from previous page)

for caching large downloads (rw-access to www-data).
proxy_temp_path /data/tmp/nginx/proxy 1 2;

Do not keep any files on disk (only temp files above).
proxy_store off;
proxy_cache off;
gzip off;

}

allow-list for ckan-related directories
location ~ /(api|ckan-admin|dashboard|dataset|favicon.ico|fonts|group|images|login_

→˓generic|organization|revision|user|webassets) {
proxy_pass http://127.0.0.1:8080$request_uri;
proxy_set_header Host $host;
proxy_read_timeout 7200;
proxy_send_timeout 7200;
proxy_cache cache;
proxy_cache_bypass $cookie_auth_tkt;
proxy_no_cache $cookie_auth_tkt;
proxy_cache_valid 30m;
proxy_cache_key $host$scheme$proxy_host$request_uri;

}

ckan root
location = / {

proxy_pass http://127.0.0.1:8080/;
proxy_set_header Host $host;
proxy_cache cache;
proxy_cache_bypass $cookie_auth_tkt;
proxy_no_cache $cookie_auth_tkt;
proxy_cache_valid 30m;
proxy_cache_key $host$scheme$proxy_host$request_uri;

}

Deny all access to other directories that bots search
(e.g. "/wp", "/wordpress", "/old", "/.git") which takes
load off of the uWSGI workers.
location / {

return 404;
}

}

Redirect all traffic to SSL
server {
listen 80;
listen [::]:80;
server_name dcor.mpl.mpg.de;
return 301 https://$host$request_uri;

}

Optional: Reject traffic that is not directed at `dcor.mpl.mpg.de:80`
(continues on next page)

4.1. Installation 25

DCOR

(continued from previous page)

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
return 444;

}

Optional: Reject traffic that is not directed at `dcor.mpl.mpg.de:443`
server {
listen 443 default_server;
listen [::]:443 default_server;
server_name _;
return 444;
ssl_certificate "/etc/ssl/certs/ssl-cert-snakeoil.pem";
ssl_certificate_key "/etc/ssl/private/ssl-cert-snakeoil.key";

}

Now, we need to modify the CKAN uWSGI file at /etc/ckan/default/ckan-uwsgi.ini:

[uwsgi]

; Since we are behind a webserver (proxy), we use the socket variant.
; We use HTTP1.1 (keep-alives)
http11-socket = 127.0.0.1:8080
uid = www-data
gid = www-data
wsgi-file = /etc/ckan/default/wsgi.py
virtualenv = /usr/lib/ckan/default
module = wsgi:application
master = true
pidfile = /tmp/%n.pid
harakiri = 7200
max-requests = 5000
vacuum = true
callable = application
buffer-size = 32768

; Make sure all options in this file exist.
strict = true

; Disable post-buffering, because nginx buffers the entire upload
; anyway and no worker will be idle when consuming it from nginx.
post-buffering = 0

; Set the number of workers to something > 1, otherwise
; only one client can connect via nginx to uWSGI at a time.
; See https://github.com/ckan/ckan/issues/5933
workers = 4
; Use lazy apps to avoid the `__Global` error.
; See https://github.com/ckan/ckan/issues/5933#issuecomment-809114593
lazy-apps = true
; If we don't want to cache the files that users want to download

(continues on next page)

26 Chapter 4. Self-Hosting

DCOR

(continued from previous page)

; (i.e. set `proxy_max_temp_file_size 0;` in nginx), then we have to
; set socket-timeout to a very large number (e.g. 7200).
; We may also want to increase this number if we the storage location for
; resources has a low write speed (e.g. NFS). From the uWSGI sources,
; it looks like the default value is 4s.
socket-timeout = 500
; (Note that we are serving CKAN via http11-socket behind nginx).
; Otherwise, downloads will fail with `uwsgi_response_sendfile_do() TIMEOUT !!!`,
; because the client cannot download the file from nginx as fast as
; uWSGI can send the file to nginx. But in this case, we can really only
; have as many connections as we have workers.
; On the other hand, if we, set `proxy_max_temp_file_size 100000m;`
; in nginx, then all downloads will be cached by nginx. And nginx will
; handle all users. The purpose of setting `workers` to `4` in uWSGI
; is now only so that CKAN does not block for as long as it takes the
; system to copy the download from uwsgi to nginx's `proxy_temp_path`.
; In other words, CKAN will only be unresponsive if 4 downloads are
; started at the same time for as long as it takes the smallest download
; to be copied over the http socket from uWSGI to nginx.
; Good to know: nginx also caches uploads, so no uWSGI worker is
; blocked *during* an upload.

; Custom logging
; disable logging in general (files easily get above 50MB)
disable-logging = true
; enable logging for a few specific cases
log-4xx = true
log-5xx = true
log-ioerror = true
; set the log format to match that of CKAN
log-date = %%Y-%%m-%%d %%H:%%M:%%S
logformat-strftime = true
logformat = %(ftime) uWSGI %(addr) (%(proto) %(status)) %(method) %(uri) =>
→˓%(size) bytes in %(msecs) msecs to %(uagent)

4.1.4 Unattended upgrades

Unattended upgrades offer a simple way of keeping the server up-to-date and patched against security vulnerabilities.

apt-get install unattended-upgrades apt-listchanges

Edit the file /etc/apt/apt.conf.d/50unattended-upgrades to your liking. The default settings should already work, but
you might want to setup email notifications and automated reboots.

Note: If you have access to an internal email server and wish to get email notifications from your system, install

apt install bsd-mailx ssmtp

and edit /etc/ssmtp/ssmtp.conf:

Note that this is something different than CKAN email notifications.

4.1. Installation 27

https://wiki.debian.org/UnattendedUpgrades

DCOR

4.2 Operations and maintenance

4.2.1 Creating an encrypted access token

Encrypted access tokens are used to safely transfer the SSL certificate and the user’s API Key from the server to the
user. This is especially important in scenarios where self-signed SSL certificates are used (medical branding) and
where users are not allowed to register on their own to prevent man-in-the-middle attacks.

An encrypted access token is an encrypted zip file with the suffix “.dcor-access” that contains the server’s SSL certificate
“server.cert” and the user’s API key “api_key.txt”. DCOR-Aid can use such an access token to automatically setup the
server connection.

Note: To create good passwords, you can use this command:

dd if=/dev/urandom bs=1M count=10 status=none | md5sum | awk '{ print $1 }'

Steps to create an access token:

1. create a CKAN user:

set-up the CKAN environment
source /usr/lib/ckan/default/bin/activate
export CKAN_INI=/etc/ckan/default/ckan.ini
create a user (use a good password)
ckan user add your_username
obtain the API key (if this does not work, you have to login
as that user and create an api key)
ckan user show your_username | grep apikey
write the API key to a text file
echo 7c0c7203-4e25-4b14-a118-553c496a7a52 > api_key.txt
copy the public SSL certificate to the current directory
cp /etc/ssl/certs/fqdn.cert ./server.cert
creat the encrypted access token (use a good encryption passoword)
zip -e your_username.dcor-access api_key.txt server.cert
cleanup
rm api_key.txt server.cert

You should send the file your_username.dcor-access to your user. Please send the encryption password of the access
token via a different channel. Especially in the context of hospitals (i.e. data protection), this is critical.

4.2.2 Creating an encrypted database backup

The CKAN database may contain sensitive information, such as email addresses, which means that any backup should
be encrypted. The following script should be self-explanatory:

#!/bin/bash
#
Create an encrypted database backup on /data/encrypted_db_dumps.
You have to import a private key with `gpg --import dcor_public.key`
and trust it with `gpg --edit-key 8FD98B2183B2C228` (command 'trust').
Then also make sure that the key id in the example below is correct.

(continues on next page)

28 Chapter 4. Self-Hosting

DCOR

(continued from previous page)

#
Put this script in /root/scripts, make it executable and add the
following cron job:
#
create encrypted database backups every day
2 0 * * * root /root/scripts/encrypted_database_backup.sh > /dev/null
#
source /usr/lib/ckan/default/bin/activate
export CKAN_INI=/etc/ckan/default/ckan.ini
dcor encrypted-database-backup --key-id 8FD98B2183B2C228

4.3 Upgrading DCOR

4.3.1 DCOR only

Updating DCOR is done via the command:

dcor update

This will update all extensions to the latest release (if installed from PyPI) or to the latest commit (if installed from git
repositories).

After each update, you should make sure that your installation is still set up correctly. The following command will
check your configuration files (amongst other things):

dcor inspect

4.3.2 Upgrading CKAN/DCOR

If you would like to upgrade CKAN via a .deb package (recommended), you may have to install DCOR again (because
the environment might be reset).

1. https://docs.ckan.org/en/2.9/maintaining/upgrading/index.html#upgrading

2. Install DCOR (either via pip install dcor_control or as described in the development section).

4.4 Troubleshooting

• When setting up CKAN error email notifications, emails are sent for every file accessed on the server. Set the
logging level to “WARNING” in all sections in /etc/ckan/default/ckan.ini.

• If you get the following errors in /var/log/ckan/ckan-uwsgi.stderr.log:

Error processing line 1 of /usr/lib/ckan/default/lib/python3.8/site-packages/
→˓ckanext-dcor-theme-nspkg.pth:

Traceback (most recent call last):
File "/usr/lib/python3.8/site.py", line 175, in addpackage

exec(line)
(continues on next page)

4.3. Upgrading DCOR 29

https://docs.ckan.org/en/2.9/maintaining/upgrading/index.html#upgrading

DCOR

(continued from previous page)

File "<string>", line 1, in <module>
File "<frozen importlib._bootstrap>", line 553, in module_from_spec

AttributeError: 'NoneType' object has no attribute 'loader'

Remainder of file ignored

Not sure what is causing this, but it was solved for me by editing the relevant .pth file. Add a new line after the
first semicolon.

From

import sys, types, os;has_mfs = sys.version_info > (3, 8);p = os.path.join(sys._
→˓getframe(1).$

to

import sys, types, os;
has_mfs = sys.version_info > (3, 8);p = os.path.join(sys._getframe(1).$

sed -i -- 's/os;has_mfs/os;\nhas_mfs/g' /usr/lib/ckan/default/lib/python3.8/site-
→˓packages/ckan*.pth

• If you get import errors like this and you are running a development server:

Traceback (most recent call last):
File "/etc/ckan/default/wsgi.py", line 12, in <module>

application = make_app(config)
File "/usr/lib/ckan/default/src/ckan/ckan/config/middleware/__init__.py", line 56,

→˓ in make_app
load_environment(conf)

File "/usr/lib/ckan/default/src/ckan/ckan/config/environment.py", line 123, in␣
→˓load_environment

p.load_all()
File "/usr/lib/ckan/default/src/ckan/ckan/plugins/core.py", line 140, in load_all

load(*plugins)
File "/usr/lib/ckan/default/src/ckan/ckan/plugins/core.py", line 154, in load
service = _get_service(plugin)

File "/usr/lib/ckan/default/src/ckan/ckan/plugins/core.py", line 257, in _get_
→˓service
raise PluginNotFoundException(plugin_name)

ckan.plugins.core.PluginNotFoundException: dcor_schemas

Please make sure that the ckan process/user has read (execute for directories) permission. The following might
help, or you run UWSGI as root:

chmod a+x /dcor-repos/*
find /dcor-repos -type d -name ckanext | xargs -0 chmod -R a+rx
chmod -R a+rx /dcor-repos/dcor_control
chmod -R a+rx /dcor-repos/dcor_shared

• If you are having issues with HDF5 file locking and are storing your data on a network file storage:

30 Chapter 4. Self-Hosting

DCOR

Traceback (most recent call last):
File "/usr/lib/ckan/default/lib/python3.8/site-packages/rq/worker.py", line 812,␣

→˓in perform_job
rv = job.perform()

File "/usr/lib/ckan/default/lib/python3.8/site-packages/rq/job.py", line 588, in␣
→˓perform

self._result = self._execute()
File "/usr/lib/ckan/default/lib/python3.8/site-packages/rq/job.py", line 594, in _

→˓execute
return self.func(*self.args, **self.kwargs)

File "/usr/lib/ckan/default/lib/python3.8/site-packages/ckanext/dcor_schemas/jobs.
→˓py", line 27, in set_dc_config_job
with dclab.new_dataset(path) as ds:

File "/usr/lib/ckan/default/lib/python3.8/site-packages/dclab/rtdc_dataset/load.py
→˓", line 63, in new_dataset
return load_file(data, identifier=identifier, **kwargs)

File "/usr/lib/ckan/default/lib/python3.8/site-packages/dclab/rtdc_dataset/load.py
→˓", line 22, in load_file
return fmt(path, identifier=identifier, **kwargs)

File "/usr/lib/ckan/default/lib/python3.8/site-packages/dclab/rtdc_dataset/fmt_
→˓hdf5.py", line 194, in __init__

self._h5 = h5py.File(h5path, mode="r")
File "/usr/lib/ckan/default/lib/python3.8/site-packages/h5py/_hl/files.py", line␣

→˓424, in __init__
fid = make_fid(name, mode, userblock_size,

File "/usr/lib/ckan/default/lib/python3.8/site-packages/h5py/_hl/files.py", line␣
→˓190, in make_fid

fid = h5f.open(name, flags, fapl=fapl)
File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "h5py/h5f.pyx", line 96, in h5py.h5f.open

OSError: Unable to open file (unable to lock file, errno = 37, error message = 'No␣
→˓locks available')

You have to disable file locking via the environment variable HDF5_USE_FILE_LOCKING=’FALSE’. The most
convenient fix is to add the line:

export HDF5_USE_FILE_LOCKING='FALSE'

to /usr/lib/ckan/default/bin/activate.

Also, you will have to set the environment variable for all configuration files (uwsgi and worker jobs in
/etc/supervisor/conf.d/*.conf):

put this before the "command=" option.
environment=HDF5_USE_FILE_LOCKING=FALSE

Just to be sure, you could also add this to /etc/environment:

HDF5_USE_FILE_LOCKING="FALSE"

• If uploads to DCOR fail and you are getting these errors in the nginx logs:

[crit] 983#983: *623 pwrite() "/var/lib/nginx/body/0000000001" failed (28: No space␣
→˓left on device) (continues on next page)

4.4. Troubleshooting 31

DCOR

(continued from previous page)

This means that your root partition does not have enough free space to cache uploaded files. A workaround is to
move the data directly to the block storage on /data. Add this in the nginx configuration file (server section):

client_body_temp_path /data/tmp/nginx 1 2;

and make sure that www-data has rw access to this directory.

• If your root partition is suddenly full, this might be due to the systemd journal in /var/logs. You can free up space
by running:

journalctl --vacuum-files=2

To add a general limit on how large the journal may become, edit the file /etc/systemd/journald.conf and set:

SystemMaxUse=200M

It might also help to remove-purge the snapd package:

apt purge snapd
rm -rf /snap
rm -rf /var/snap
rm -rf /var/lib/snapd

• Problems wih OSError: [Errno 28] No space left on device upon uploads of large files. The reason might be
that uwsgi stores temporary files in /tmp. You could check this with:

(default) root@server:/# lsof / | grep "/tmp"
uwsgi 1301 www-data 7u REG 0,28 2038633555 1304952 /tmp/
→˓#1304952 (deleted)
uwsgi 1301 www-data 12u REG 0,28 1558086333 1304953 /tmp/
→˓#1304953 (deleted)

You could also check whether your CKAN installation is responsible for this (df -h shows less space than there
should be) by restarting all services:

supervisorctl restart all

According to a PDF file that I found somewhere, uwsgi always stores its temporary files under /tmp, a behavior
that can be controlled via the environment variable TMPDIR. Thus, the solution is to edit the uwsgi supervisor
file /etc/supervisor/conf.d/ckan-uwsgi.conf and set this TPMDIR to something under /data:

environment=HDF5_USE_FILE_LOCKING=FALSE,TMPDIR=/data/tmp/uwsgi

• If downloads of large resources are aborted by the server after a short time, this might be because nginx caches
the download on the root partition which does not have enough free space. You have to specify a cache location
with sufficient free space in /etc/nginx/sites-enabled/ckan by uncommenting the line:

proxy_temp_path /data/tmp/nginx/proxy 1 2;

• If uploads fail with a timeout error message and in the logs you get:

OSError: timeout during read(57344) on wsgi.input
2021-09-07 09:20:43 uWSGI 127.0.0.1 (HTTP/1.0 500) POST /api/3/action/resource_
→˓create => 0 bytes in 8644 msecs to DCOR-Aid/0.6.4 (continues on next page)

32 Chapter 4. Self-Hosting

DCOR

(continued from previous page)

that probably means that the socket-timeout value for uWSGI is too low. A reason for that could be e.g. that the
resources are written to a location with low write speed (e.g. NFS). A solution is to add the socket-timeout to
/etc/ckan/default/ckan-uwsgi.ini:

socket-timeout = 7200

• If uploads fail with the following error message in the ckan-uwsgi logs:

2021-09-08 18:46:16 - [uwsgi-body-read] Error reading 6563 bytes. Content-Length:␣
→˓15428164609 consumed: 2150065757 left: 13278098852 message: Client closed␣
→˓connection

[...]

OSError: error during read(8192) on wsgi.input

This could mean (if you are storing data on slow storage) that the send_timeout in the nginx configuration is not
large enough.

4.4. Troubleshooting 33

DCOR

34 Chapter 4. Self-Hosting

CHAPTER

FIVE

DCOR DEVELOPMENT

This section describes how to setup a DCOR development system (CKAN + DCOR extensions).

5.1 Ubuntu and CKAN

We recommend to setup a virtual machine for development. It also works with docker, but currently not out of the box
(see https://github.com/ckan/ckan/issues/5572). Otherwise, the installation instructions are identical to those in the
self-hosting section.

5.2 DCOR Extensions

5.2.1 Installation

This part differs from the installation for production. We want to have the DCOR extensions installed in editable mode.

Note: If you are installing DCOR in a virtual machine, it makes sense to access the extensions directories directly
from the host system. (without having to git or rsync data back and forth).

On the host machine, create a directory where all relevant repositories will be cloned to (e.g. /home/paul/repos/
DCOR).

In Virtual Machine Manager, add a “Filesystem” hardware. Choose “Path” driver, “Passthrough” mode, “Default” write
policy and set the source path to where the repositories are located on the host machine (/home/paul/repos/DCOR).
Set the target path to “/repos”.

On the guest machine, add the following line to /etc/fstab:

/repos /dcor-repos 9p trans=virtio,version=9p2000.L,rw 0 0

After mkdir /dcor-repos, chmod a+rx /dcor-repos, and mount /dcor-repos, you can then access the repos-
itories of the host machine directly from the guest machine. In order for everything to work properly, libvirt needs
access to /home/paul/repos/DCOR. The easiest way to achieve that is to set the libvirt user to your user name, i.e.
edit /etc/libvirt/qemu.conf and set user = "paul" (systemctl restart libvirtd after doing so).

Let’s first choose a directory where all DCOR-related repositories will be located (e.g. /dcor-repos). Clone
all relevant directories. If you are forking any of these repositories, you will wnat to run git clone
git@github.com:username/repository_name.git` instead.

35

https://github.com/ckan/ckan/issues/5572

DCOR

mkdir -p /dcor-repos
cd /dcor-repos
git clone https://github.com/DCOR-dev/dcor_control.git
git clone https://github.com/DCOR-dev/dcor_shared.git
git clone https://github.com/DCOR-dev/ckanext-dc_log_view.git
git clone https://github.com/DCOR-dev/ckanext-dc_serve.git
git clone https://github.com/DCOR-dev/ckanext-dc_view.git
git clone https://github.com/DCOR-dev/ckanext-dcor_depot.git
git clone https://github.com/DCOR-dev/ckanext-dcor_schemas.git
git clone https://github.com/DCOR-dev/ckanext-dcor_theme.git

Next, install each of those repositories in the CKAN virtual environment (in the exact same order).

source /usr/lib/ckan/default/bin/activate
cd /dcor-repos
pip install --upgrade pip wheel
shared extension dependency
pip install -e dcor_shared
extensions
pip install -e ckanext-dc_log_view
pip install -e ckanext-dc_serve
pip install -e ckanext-dc_view
pip install -e ckanext-dcor_depot
pip install -e ckanext-dcor_schemas
pip install -e ckanext-dcor_theme
dcor control (this must be installed at the very end)
pip install -e dcor_control

5.2.2 Initialization

Please follow the initialization steps for self-hosting.

5.3 Load some test data into the database

You can test the basic functionalities of your DCOR installation by importing these publicly available datasets from
figshare:

ckan import-figshare

5.4 robots.txt

If you don’t want bots to index you site, add the following line to the server section in /etc/nginx/sites-enabled/
ckan (right before location / { [...]):

location = /robots.txt { return 200 "User-agent: *\nDisallow: /\n"; }

36 Chapter 5. DCOR Development

DCOR

5.5 Important commands

5.5.1 System

Restart CKAN

supervisorctl reload

Find out what went wrong in case of internal server errors:

supervisorctl status
tail -n500 /var/log/ckan/ckan-uwsgi.stderr.log

5.5.2 CLI

If you are using the CKAN or DCOR CLI, activate environment and set CKAN_INI.

source /usr/lib/ckan/default/bin/activate
export CKAN_INI=/etc/ckan/default/ckan.ini

User ckan --help and dcor --help to get a list of commands. E.g. to list all jobs, use

ckan jobs list

To reset the CKAN database and search index:

dcor reset

5.5. Important commands 37

DCOR

38 Chapter 5. DCOR Development

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

39

	Introduction
	Background
	DCOR is open and free
	Technology

	Using DCOR
	Accessing Data on DCOR
	General remarks
	Access via DCOR-Aid GUI
	Access via DCOR-Aid Python library
	Example: List all RT-DC resources for a DCOR circle
	Example: Order all resources of a DCOR circle according to flow rate

	Uploading data to DCOR
	Prerequisites
	Data preparation with DCKit
	Data upload with DCOR-Aid
	Generating DCOR-Aid upload tasks

	Sharing (private) data with others
	Permission system
	Circles: Sharing with colleagues
	Collections: Sharing for collaborators
	Datasets: Simple sharing

	Citing data on DCOR

	Frequently Asked Questions
	Can I upload a test dataset somewhere?
	What happens in the background when I upload a dataset?
	Why can’t I add resources to existing datasets?

	Self-Hosting
	Installation
	Ubuntu and CKAN
	DCOR Extensions
	Installation
	Initialization
	Testing

	SSL
	Creating an SSL certificate (Intranet only)
	Configuring nginx (SSL and uWSGI proxy)

	Unattended upgrades

	Operations and maintenance
	Creating an encrypted access token
	Creating an encrypted database backup

	Upgrading DCOR
	DCOR only
	Upgrading CKAN/DCOR

	Troubleshooting

	DCOR Development
	Ubuntu and CKAN
	DCOR Extensions
	Installation
	Initialization

	Load some test data into the database
	robots.txt
	Important commands
	System
	CLI

	Indices and tables

